Abstract
Quinine-based polymers have previously demonstrated promising performance in delivering pDNA in cells owing to their electrostatic as well as the nonelectrostatic interactions with pDNA. Herein, we evaluate whether quinine-based polymers are versatile for delivery of mRNA and Cas9-sgRNA complexes, especially in a serum-rich environment. Both mRNA and the Cas9-sgRNA complex are potent therapeutics that are structurally, chemically, and functionally very different from pDNA. By exploring a family of 7 quinine-based polymers that vary in monomer structure and polymer composition, we tested numerous formulations (42 with pDNA, 96 with mRNA, and 48 with Cas9-sgRNA) for payload-polymer complexation and delivery to compare payload-dependent structure-activity relationships. Several formulations demonstrated performance comparable to or better than the commercially available transfection agent jetPEI. The results of this study demonstrate the potential of quinine-based as a versatile carrier platform for delivering a wide range of nucleic acid therapeutics and serving the drug delivery needs in the field genetic medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.