Abstract

The substitution of manganese and chromium for 6 at.% nickel in Ti 1.6V 0.4Ni leads the rapid quenching synthesis of quinary icosahedral phase (i-phase) evidenced by the observations of 2-, 3- and 5-fold symmetries. As negative electrode in Ni-MH battery, the quinary Ti–V–Ni–Mn–Cr i-phase can deliver a maximum discharge capacity of 278 mAh g −1 at 30 mA g −1, larger than that of Ti 1.6V 0.4Ni master alloy anode owing to Mn and/or Cr doping. After a preliminary test of 30 consecutive cycles the cycling capacity retention rate (CR%) is 80%. The strong chemisorption of hydrogen shown in cyclic voltammetric (CV) response indicates that the electrocatalytic activity improvement for the i-phase negative electrode is highly demanded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.