Abstract

Simple SummaryBacterial diseases causes massive mortalities in aquaculture and antibiotic use remains the main measure to keep these under control. Pisciricketssia salmonis, an intracellular bacterium only present in Chile, produces high mortalities in farmed salmon and is currently the main reason for using antimicrobials compared to other salmon-producing countries such as Norway. Environmental and antimicrobial resistance concerns have been raised by the local and global public and society, although no scientific evidence has demonstrated such an impact. Thus, there is a constant search for new alternatives that can complement or reduce the use of antimicrobial in intensive salmon farming. Phytochemicals such as saponins from Quillaja saponaria extracts have been proven to prevent and control diseases in other animal production systems. This study explored the safety and efficacy of quillaja extract in in vitro infections with P. salmonis. The results of this study showed a good in vitro safety and efficacy to infections. The efficacy proved to be dependent on the quantity of saponins and toxicity dependent on purification. The results showed that quillaja extracts could be potentially used as a new sustainable and eco-friendly alternative to control P. salmonis infection, contributing to decreased fish mortality, antibiotic use and antimicrobial resistance in intensive aquaculture worldwide.P. salmonis infections are the cause of major bacterial disease in salmonids in Chile, and the reason for using more antibiotics compared to other salmon-producing countries. Vaccination and antibiotics have not been efficient and new approaches are needed. The safety of Quillaja saponaria extracts was measured by cytotoxicity using flow cytometry of cytopathic and death of fish cell cultures and efficacy was assessed using in vitro infection models with pathogenic P. salmonis. Cytotoxicity was low and control of in vitro infections was achieved with all products, with protection of over 90%. Minimum inhibitory concentrations were much higher than those in the infection using cell cultures. These results suggest a dual mechanism of action where less purified extracts with a combination of saponin and non-saponin components simultaneously decrease P. salmonis infection while protecting cell lines, rather than exerting a direct antimicrobial effect. Quillaja saponins controlled in vitro infections with P. salmonis and could be considered good candidates for a new, safe and sustainable method of controlling fish bacterial infectious diseases.

Highlights

  • Global aquaculture production has steadily increased in the last two decades, achieving 114.5 million tons in 2018 [1], and Chile has become the second highest producer of salmonids in the world, with 924 thousand tons of salmon produced in 2018 [2]

  • Our study showed a direct relationship between the reduction in bacterial infection with the saponin concentration

  • Quillaja products containing more than 65% of saponin (UD-100Q or VaxSap) significantly reduced bacterial infection, while Quillaja extracts with saponin concentrations between 20% and 25% (QD-100) had a comparatively higher infection rate than other products

Read more

Summary

Introduction

Global aquaculture production has steadily increased in the last two decades, achieving 114.5 million tons in 2018 [1], and Chile has become the second highest producer of salmonids in the world, with 924 thousand tons of salmon produced in 2018 [2]. Intensive animal production has historically been the subject of concern because they are associated with poor animal health and welfare [3]. A negative and biased perception of intensive animal farming persists in consumers and the general public [3]. This has been the case for aquaculture, where the main concerns have been disease outbreaks related to high stocking densities [7], excessive use of antimicrobials leading to bacterial resistance [8] and negative environmental impacts of fish farming such as degrading seafloor contamination [9] or invasion of salmon escapees to the sea, rivers and lakes [10]. The most important salmon bacterial disease currently in Chile is Septicaemic Rickettsial Syndrome (SRS) accounting for 54.5% of mortalities associated with infectious diseases during the seawater growing phase [15]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.