Abstract

We performed technical optimization followed by a pilot clinical study of quiescent-interval single-shot MR angiography for peripheral vascular disease. Quiescent-interval single-shot MR angiography acquires data using a modified electrocardiographic (ECG)-triggered, fat suppressed, two-dimensional, balanced steady-state, free precession pulse sequence incorporating slice-selective saturation and a quiescent interval for maximal enhancement of inflowing blood. Following optimization at 1.5 T, a pilot study was performed in patients with peripheral vascular disease, using contrast-enhanced MR angiography as the reference standard. The optimized sequence used a quiescent interval of 228 ms, alpha/2 catalyzation of the steady-state magnetization, and center-to-out partial Fourier acquisition with parallel acceleration factor of 2. Spatial resolution was 2-3mm along the slice direction and 0.7-1mm in-plane before interpolation. Excluding stented arterial segments, the sensitivity, specificity, and positive and negative predictive values of quiescent-interval single-shot MR angiography for arterial narrowing greater than 50% or occlusion were 92.2%, 94.9%, 83.9%, and 97.7%, respectively. Quiescent-interval single-shot MR angiography provided robust depiction of normal peripheral arterial anatomy and peripheral vascular disease in less than 10 min, without the need to tailor the technique for individual patients. Moreover, the technique provides consistent image quality in the pelvic region despite the presence of respiratory and bowel motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.