Abstract

To achieve an efficient methodology for approximating pan evaporation (EP), this study offers two metaheuristic-integrated predictors. Shuffled complex evolution (SCE) and electromagnetic field optimization (EFO) are two of the fastest metaheuristic algorithms that are synthesized with artificial neural network (ANN). By doing this, the ANN is optimized in a noticeably shorter time compared to its integration with other metaheuristic techniques. Five-year climatic data of the Bakersfield station (California, USA) with an 80:20 ratio are used for developing and testing the methods. The proposed hybrids are implemented with appropriate population sizes (20 and 35 for the SCE and EFO, respectively) and their results are compared to a single ANN. Accuracy evaluation (correlation coefficients > 0.99) professed that the neural network with both conventional and sophisticated trainers is a competent approach for the EP simulation. Besides, it was observed that the error of prediction by the ANN-SCE and ANN-EFO is 6.02 and 9.27% lower than the single ANN, respectively. Therefore, the used strategies can enhance the applicability of the ANN. The time elapsed in the optimization using SCE and EFO was 479.0 and 281.9 s, respectively. A comparison between these algorithms revealed that the EFO is both a faster and more accurate optimizer. The ANN-EFO is accordingly recommended as a new efficient model for predicting the EP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call