Abstract

The Quick UDP Internet Connections (QUIC) protocol provides advantages over traditional TCP, but its encryption functionality reduces the visibility for operators into network traffic. Many studies deploy machine learning and deep learning algorithms on QUIC traffic classification. However, standalone machine learning models are subject to overfitting and poor predictability in complex network traffic environments. Deep learning on the other hand requires a huge dataset and intensive parameter fine-tuning. On the contrary, ensemble techniques provide reliability, better prediction, and robustness of the trained model, thereby reducing the chance of overfitting. In this paper, we approach the QUIC network traffic classification problem by utilizing five different ensemble machine learning techniques, namely: Random Forest, Extra Trees, Gradient Boosting Tree, Extreme Gradient Boosting Tree, and Light Gradient Boosting Model. We used the publicly available dataset with five different services such as Google Drive, YouTube, Google Docs, Google Search, and Google Music. The models were trained using a different number of features on different scenarios and evaluated using several performance metrics. The results show that Extreme Gradient Boosting Tree and Light Gradient Boosting Model outperform the other models and achieve one of the highest results among the state-of-the-art models found in the literature with a simpler model and features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.