Abstract

Many stochastic systems have arrival processes that exhibit clustering behavior. In these systems, arriving entities influence additional arrivals to occur through self-excitation of the arrival process. In this paper, we analyze an infinite server queueing system in which the arrivals are driven by the self-exciting Hawkes process and where service follows a phase-type distribution or is deterministic. In the phase-type setting, we derive differential equations for the moments and a partial differential equation for the moment generating function; we also derive exact expressions for the transient and steady-state mean, variance, and covariances. Furthermore, we also derive exact expressions for the auto-covariance of the queue and provide an expression for the cumulant moment generating function in terms of a single ordinary differential equation. In the deterministic service setting, we provide exact expressions for the first and second moments and the queue auto-covariance. As motivation for our Hawkes queueing model, we demonstrate its usefulness through two novel applications. These applications are trending internet traffic and arrivals to nightclubs. In the web traffic setting, we investigate the impact of a click. In the nightclub or Club Queue setting, we design an optimal control problem for the optimal rate to admit club-goers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.