Abstract

Hawkes processes are a class of simple point processes that are self-exciting and have a clustering effect, with wide applications in finance, social networks and many other fields. This paper considers a self-exciting Hawkes process where the baseline intensity is time-dependent, the exciting function is a general function and the jump sizes of the intensity process are independent and identically distributed nonnegative random variables. This Hawkes model is non-Markovian in general. We obtain closed-form formulas for the Laplace transform, moments and the distribution of the Hawkes process. To illustrate the applications of our results, we use the Hawkes process to model the clustered arrival of trades in a dark pool and analyse various performance metrics including time-to-first-fill, time-to-complete-fill and the expected fill rate of a resting dark order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.