Abstract

In the framework of a general scalar-tensor theory, we investigate the equivalence between two different parametrizations of fields that are commonly used in cosmology - the so-called Jordan frame and Einstein frame. While it is clear that both parametrizations are mathematically equivalent at the level of the classical action, the question about their mathematical equivalence at the quantum level as well as their physical equivalence is still a matter of debate in cosmology. We analyze whether the mathematical equivalence still holds when the first quantum corrections are taken into account. We explicitly calculate the one-loop divergences in both parametrizations by using the generalized Schwinger-DeWitt algorithm and compare both results. We find that the quantum corrections do not coincide off shell and hence induce an off shell dependence on the parametrization. According to the equivalence theorem, the one-loop divergences should however coincide on shell. For a cosmological background, we show explicitly that the on shell equivalence is indeed realized by a nontrivial cancellation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call