Abstract

Searching the data of gravitational-wave detectors for signals from compact binary mergers is a computationally demanding task. Recently, machine-learning algorithms have been proposed to address current and future challenges. However, the results of these publications often differ greatly due to differing choices in the evaluation procedure. The Machine Learning Gravitational-Wave Search Challenge was organized to resolve these issues and produce a unified framework for machine-learning search evaluation. Six teams submitted contributions, four of which are based on machine-learning methods, and two are state-of-the-art production analyses. This paper describes the submission from the team TPI FSU Jena and its updated variant. We also apply our algorithm to real O3b data and recover the relevant events of the GWTC-3 catalog. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.