Abstract

BackgroundDoxorubicin is an anthracycline antitumor agent commonly used in clinical practice, which has some nephrotoxicity and is often used to establish mouse models of kidney injury for basic medical research. This study will investigate the protective effect of quercetin on renal function in doxorubicin-induced nephropathy mice. MethodsC57BL/6 mice were divided into control, model, and quercetin low-, and high-dose groups. Serum and urine were collected to analyze markers of kidney function. H&E staining was used to detect pathological changes in renal tissues. Transmission electron microscopy was performed to observe the ultrastructural changes in renal tissues. Immunohistochemistry was performed to detect the changes of Ang II. RT-qPCR was performed to detect the changes of cytokines. ELISA was used to detect changes in serum inflammatory factors. Molecular docking was performed to verify the targeting relationship between quercetin and AKT1. Western blot was performed to detect Bax, Bcl-2, Cyt-c, AKT1, Raf, MEK, and ERK proteins. ResultsQuercetin could induce the recovery of kidney function in kidney-injured mice; H&E results showed that kidney tissue damage and tissue fibrosis were reduced in kidney-injured mice under quercetin. The mitochondrial swollen structure was destroyed by doxorubicin, while the mitochondrial structure was restored under quercetin. The levels of abnormal apoptotic proteins Bax and Bcl-2 were regulated to normal by quercetin. The high expression of Ang II caused by doxorubicin was down-regulated by quercetin. Abnormal inflammatory factors caused by doxorubicin were reversed by quercetin. Western blot experiments showed that quercetin regulated the protein levels of AKT1 and Raf/MEK/ERK and inhibited the detrimental effects of doxorubicin. ConclusionQuercetin may mitigate doxorubicin-induced kidney injury in mice by regulating renal cell inflammatory factors and Raf/MEK/ERK signaling pathway through AKT1 to promote recovery of renal function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.