Abstract

How fluctuations can be eliminated or attenuated is a matter of general interest in the study of steadily-forced dissipative nonlinear dynamical systems. Here, we extend previous work on "nonlinear quenching" [Hide, 1997] by investigating the phenomenon in systems governed by the novel autonomous set of nonlinear ordinary differential equations (ODE's) [Formula: see text], ẏ=-xzq+bx-y and ż=xyq-cz (where (x, y, z) are time(t)-dependent dimensionless variables and [Formula: see text], etc.) in representative cases when q, the "quenching function", satisfies q=1-e+ey with 0≤e≤1. Control parameter space based on a,b and c can be divided into two "regions", an S-region where the persistent solutions that remain after initial transients have died away are steady, and an F-region where persistent solutions fluctuate indefinitely. The "Hopf boundary" between the two regions is located where b=bH(a, c; e) (say), with the much studied point (a, b, c)=(10, 28, 8/3), where the persistent "Lorenzian" chaos that arises in the case when e=0 was first found lying close to b=bH(a, c; 0). As e increases from zero the S-region expands in total "volume" at the expense of F-region, which disappears altogether when e=1 leaving persistent solutions that are steady throughout the entire parameter space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call