Abstract

We investigate dynamics arising after an interaction quench in the quantum sine-Gordon model for a one-dimensional system initially prepared in a spatially inhomogeneous domain wall state. We study the time-evolution of the density, current and equal time correlation functions using the truncated Wigner approximation (TWA) to which quantum corrections are added in order to set the limits on its validity. For weak to moderate strengths of the back-scattering interaction, the domain wall spreads out ballistically with the system within the light cone reaching a nonequilibrium steady-state characterized by a net current flow. A steady state current exists for a quench at the exactly solvable Luther-Emery point. The magnitude of the current decreases with increasing strength of the back-scattering interaction. The two-point correlation function of the variable canonically conjugate to the density reaches a spatially oscillating steady state at a wavelength inversely related to the current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.