Abstract

We study non-perturbatively the time evolution of a qubit subject to amplitude-damping noise. We show that at strong coupling the qubit decoherence can be quenched owing to large environment feedbacks, such that the qubit can evolve coherently even in the long-time limit. As an application, we show that for a quantum channel that consists of two independent qubits subject to uncorrelated local amplitude-damping noises, it can maintain at strong coupling finite entanglement and better than classical teleportation fidelity at long times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.