Abstract

We study the exact dynamics of optical qubits encoded via coherent states with opposite phases which are interacting with an environment modeled as a collection of simple harmonic oscillators. Making use of a coherent-state path integral formulation, we are able to study memory effects on the dynamics of the coherent-state qubits due to strong environment coupling. We apply this formulation to examine the time evolution of a noisy quantum channel formed by two coherent-state qubits that are subject to uncorrelated local environment noises. In particular, we examine the time evolution of entanglement and maximal teleportation fidelity of the noisy quantum channel and show that at strong coupling, due to large feedback effects from the environment noise, it is possible to maintain a robust quantum channel in the long-time limit if appropriate error-correcting code is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.