Abstract
The development of coils that can survive a quench is crucial for demonstrating the viability of MgB2-based main magnet coils used in MRI systems. Here we have studied the performance and quench properties of a large (outer diameter: 901 mm; winding pack: 44 mm thick × 50.6 mm high) conduction-cooled, react-and-wind, MgB2 superconducting coil. Minimum quench energy (MQE) values were measured at several coil operating currents (Iop), and distinguished from the minimum energy needed to generate a normal zone (MGE). During these measurements, normal zone propagation velocities (NZPV) were also determined using multiple voltage taps placed around the heater zone. The conduction cooled coil obtained a critical current (Ic) of 186 A at 15 K. As the operating currents (Iop) varied from 80 to 175 A, MQE ranged from 152 to 10 J, and NZPV increased from 1.3 to 5.5 cm s−1. Two kinds of heater were involved in this study: (1) a localized heater (‘test heater’) used to initiate the quench, and (2) a larger ‘protection heater’ used to protect the coil by distributing the normal zone after a quench was detected. The protection heater was placed on the outside surface of the coil winding. The test heater was also placed on the outside surface of the coil at a small opening made in the protection heater. As part of this work, we also developed and tested an active protection scheme for the coil. Such active protection schemes are of great interest for MgB2-based MRIs because they permit exploitation of the relatively large MQE values of MgB2 to enable the use of higher Je values which in turn lead to competitive MgB2 MRI designs. Finally, the ability to use a quench detection voltage to fire a protection heater as part of an active protection scheme was also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.