Abstract
We study the quench dynamics of noninteracting ultracold atoms loaded in one-dimensional (1D) optical lattices with artificial gauge fields, which are modeled by lattices with complex hopping coefficients. After suddenly changing the hopping coefficient, time evolutions of the density distribution, momentum distribution, and mass current at the center are studied for both finite uniform systems and trapped systems. Effects of filling factor, system size, statistics, harmonic trap, and phase difference in hopping are identified, and some interesting phenomena show up. For example, for a finite uniform fermionic system shock and rarefaction wave plateaus are formed at two ends, whose wave fronts move linearly with speed equaling to the maximal absolute group velocity. While for a finite uniform bosonic system the whole density distribution moves linearly at the group velocity. Only in a finite uniform fermionic system there can be a constant quasi-steady-state current, whose amplitude is decided by the phase difference and filling factor. The quench dynamics can be tested in ultracold atoms with minimal modifications of available experimental techniques, and it is a very interesting and fundamental example of the transport phenomena and the nonequilibrium dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have