Abstract
We examine the quench dynamics of an extended Su-Schrieffer-Heeger (SSH) model involving long-range hopping that can hold multiple topological phases. Using winding number diagrams to characterize the system's topological phases geometrically, it is shown that there can be multiple winding number transition paths for a quench between two topological phases. The dependence of the quench dynamics is studied in terms of the survival probability of the fermionic edge modes and postquench transport. For two quench paths between two topological regimes with the same initial and final topological phase, the survival probability of edge states is shown to be strongly dependent on the winding number transition path. This dependence is explained using energy band diagrams corresponding to the paths. Following this, the effect of the winding number transition path on transport is investigated. We find that the velocities of maximum transport channels varied along the winding number transition path. This variation depends on the path we choose, i.e., it increases or decreases depending upon the path. An analysis of the coefficient maps, energy spectrum, and spatial structure of the edge states of the final quench Hamiltonian provides an understanding of the path-dependent velocity variation phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.