Abstract

A novel design approach has been proposed to generate winding paths for composite pressure vessels with unequal dome parts. The experiments were carried out to obtain the mandrel profiles after each update of composite layers, and then the winding paths were generated to accommodate the updated profiles. To evaluate the effect of mandrel profiles updated by composite layers on the winding paths, the variety of winding angles and dome thickness distribution as well as the slippage coefficients corresponding to different winding paths were investigated. Further, the burst pressure was predicted using the progressive failure method, and the performance factors were calculated to evaluate the effect of the profile-update-based winding paths on the structural performance of the pressure vessels. The results illustrate that the winding angles have a significant change as the number of updated layers increases. The thickness accumulation on dome parts is reduced and the fiber stability is further improved, therefore, the precision of fiber paths is improved using updates of mandrel profiles. The improvement of the performance factor indicates that the present method is able to provide a useful tool for improving the performance of composite pressure vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call