Abstract

In single-Cooper-pair box, the number of electrons in the box is quantized and they form a single macroscopic quantum charge-number state, corresponding to the number of excess electrons in the box. By making all the electrodes superconducting, we can couple two neighboring charge-number states coherently. In this way one can create an artificial two-level system. Qubit operations were demonstrated in two different control techniques, dc electric-field gate bias and ac field bias. The dc method was unique compared with the commonly used Rabi-oscillation-type operation. Here the system was biased at the degenerate point of the two states so that the dynamical phase does not develop during the operation. This was the first time that the quantum coherent oscillation was observed in a solid-state device whose quantum states involved a macroscopic number of quantum particles. Multiple-pulse experiments were also carried out and phase control was also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.