Abstract

We consider a unitary transfer of an arbitrary state of a two-level atomic qubit in a cavity to the finite amplitude coherent state cavity field. Such transfer can be used to either provide an effective readout measurement on the atom by a subsequent measurement on the light field or as a method for initializing a fixed atomic state - a so-called "attractor state", studied previously for the case of an infinitely strong cavity field. We show that with a suitable adjustment of the coherent amplitude and evolution time the qubit transfers all its information to the field, attaining a selected state of high purity irrespectively of the initial state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.