Abstract
We consider a unitary transfer of an arbitrary state of a two-level atomic qubit in a cavity to the finite amplitude coherent state cavity field. Such transfer can be used to either provide an effective readout measurement on the atom by a subsequent measurement on the light field or as a method for initializing a fixed atomic state - a so-called "attractor state", studied previously for the case of an infinitely strong cavity field. We show that with a suitable adjustment of the coherent amplitude and evolution time the qubit transfers all its information to the field, attaining a selected state of high purity irrespectively of the initial state.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have