Abstract

Large fans and terraces are frequent in the Khumbu Himal within the high Himalayan valleys south of Mt. Everest. These features are composed of massive matrix- and clast-supported diamicts that were formed from both hyperconcentrated flows and coarse-grained debris flows. Cosmogenic radionuclide (CRN) exposure ages for boulders on fans and terraces indicate that periods of fan and terrace formation occurred at c . 16, c . 12, c . 8, c . 4 and c . 1.5 ka, and are broadly coincident with the timing of glaciation in the region. The dating precision is insufficient to resolve whether the surfaces formed before, during or after the correlated glacial advance. However, the sedimentology, and morphostratigraphic and geomorphological relationships suggest that fan and terrace sedimentation in this part of the Himalaya primarily occurs during glacier retreat and is thus paraglacial in origin. Furthermore, modern glacial-lake outburst floods and their associated deposits are common in the Khumbu Himal as the result of glacial retreat during historical times. We therefore suggest that Late Quaternary and Holocene fan and terrace formation and sediment transfer are probably linked to temporal changes in discharge and sediment load caused by glacier oscillations responding to climate change. The timing of major sedimentation events in this region can be correlated with fans and terraces in other parts of the Himalaya, suggesting that major sedimentation throughout the Himalaya is synchronous and tied to regional climatic oscillations. Bedrock incision rates calculated from strath terrace ages average c . 3.9 mm a −1 , suggesting that the overall rate of incision is set by regional uplift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.