Abstract

Let 𝓈 be a finite or countable set. Given a matrix F = (Fij)i,j∈𝓈 of distribution functions on R and a quasistochastic matrix Q = (qij)i,j∈𝓈, i.e. an irreducible nonnegative matrix with maximal eigenvalue 1 and associated unique (modulo scaling) positive left and right eigenvectors u and v, the matrix renewal measure ∑n≥0Qn ⊗ F*n associated with Q ⊗ F := (qijFij)i,j∈𝓈 (see below for precise definitions) and a related Markov renewal equation are studied. This was done earlier by de Saporta (2003) and Sgibnev (2006, 2010) by drawing on potential theory, matrix-analytic methods, and Wiener-Hopf techniques. In this paper we describe a probabilistic approach which is quite different and starts from the observation that Q ⊗ F becomes an ordinary semi-Markov matrix after a harmonic transform. This allows us to relate Q ⊗ F to a Markov random walk {(Mn, Sn)}n≥0 with discrete recurrent driving chain {Mn}n≥0. It is then shown that renewal theorems including a Choquet-Deny-type lemma may be easily established by resorting to standard renewal theory for ordinary random walks. The paper concludes with two typical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call