Abstract
The results of large-scale valence ab initio calculations of the potential-energy curves for the ground states and several excited states of Cd–rare gas (RG) van der Waals molecules are reported. In the calculations, Cd20+ and RG8+ cores are simulated by energy-consistent pseudopotentials, which also account for scalar-relativistic effects and spin-orbit interaction within the valence shell. The potential energies of the Cd–RG species in the ΛS coupling scheme have been evaluated by means of ab initio complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) calculations with a total 28 valence electrons, but the spin-orbit matrix has been computed in a reduced configuration interaction space restricted to the CASSCF level. Finally, the Ω potential curves are obtained by diagonalization of the modified spin-orbit matrix (its diagonal elements before diagonalization substituted by the corresponding CASPT2 eigenenergies). The calculated potential curves, especially the spectroscopic parameters derived for the ground states and several excited states of the Cd–RG species are presented and discussed in the context of available experimental data. The theoretical results exhibit very good agreement with experiment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have