Abstract

We show that if a graph G has the property that all subsets of vertices of size n/4 contain the “correct” number of triangles one would expect to find in a random graph G(n, 1/2), then G behaves like a random graph, that is, it is quasi-random in the sense of Chung, Graham, and Wilson [6]. This answers positively an open problem of Simonovits and Sos [10], who showed that in order to deduce that G is quasi-random one needs to assume that all sets of vertices have the correct number of triangles. A similar improvement of [10] is also obtained for any fixed graph other than the triangle, and for any edge density other than 1/2. The proof relies on a theorem of Gottlieb [7] in algebraic combinatorics, concerning the rank of set inclusion matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.