Abstract
AbstractConsider the following reversible cascade on the Erdős-Rényi random graph G(n,p). In round zero, a set of vertices, called the seeds, are active. For a given ρ ∈ ( 0,1 ], a non-isolated vertex is activated (resp., deactivated) in round t ∈ ℤ + if the fraction f of its neighboring vertices that were active in round t − 1 satisfies f ≥ ρ (resp., f < ρ). An irreversible cascade is defined similarly except that active vertices cannot be deactivated. A set of vertices, S, is said to be stable if no vertex will ever change its state, from active to inactive or vice versa, once the set of active vertices equals S. For both the reversible and the irreversible cascades, we show that for any constant ε > 0, all p ∈ [ (1 + ε) (ln (e/ρ))/n,1 ] and with probability 1 − n − Ω(1), every stable set of G(n,p) has size O(⌈ρn⌉) or n − O(⌈ρn⌉).KeywordsRandom GraphNeighboring VertexDiscrete Apply MathematicActive VertexSimple Undirected GraphThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.