Abstract
In this paper, a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (gBK) equation is investigated, which can be used to describe the interaction of a Riemann wave propagating along y-axis and a long wave propagating along x-axis. The complete integrability of the gBK equation is systematically presented. By employing Bell’s polynomials, a lucid and systematic approach is proposed to systematically study its bilinear formalism, bilinear Bäcklund transformations, Lax pairs, respectively. Furthermore, based on multidimensional Riemann theta functions, the periodic wave solutions and soliton solutions of the gBK equation are derived. Finally, an asymptotic relation between the periodic wave solutions and soliton solutions are strictly established under a certain limit condition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have