Abstract

Electrons in graphene with heavy adatoms (such as In or Tl) have been predicted to form a 2D topological insulator phase with a substantial spectral gap potentially suitable for future practical applications. In order to facilitate the ongoing experimental efforts to identify this phase we perform a theoretical study of its spectral properties in a model graphene system with randomly distributed adatoms. Our extensive modeling shows that random heavy adatoms produce a full spectral gap (as opposed to a mobility gap) accompanied by distinctive quasiparticle interference patterns observable by means of Fourier-transform scanning tunneling spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.