Abstract

A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility of a mirror symmetry-protected topological crystalline insulator phase in the Pb(1-x)Sn(x)Te class of materials that has been theoretically predicted to exist in its end compound SnTe. Our experimental results show that at a finite Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi(1-x)Sb(x). Our observation of the spin-polarized Dirac surface states in the inverted Pb(1-x)Sn(x)Te and their absence in the non-inverted compounds related via a topological phase transition provide the experimental groundwork for opening the research on novel topological order in quantum devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.