Abstract
We discuss the evolution of the local quasiparticle spectral density and the related tunneling conductance measurable by the scanning tunneling microscope, as a function of distance r and angle \theta from the vortex core in a d_{x^2-y^2} superconductor. We consider the effects of electronic disorder and of a strongly anisotropic tunneling matrix element, and show that in real materials they will likely obscure the ~1/r asymptotic tail in the zero-bias tunneling conductance expected from the straightforward semiclassical analysis. We also give a prediction for the tunneling conductance anisotropy around the vortex core and establish a connection to the structure of the tunneling matrix element.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.