Abstract

In this work, we derive a reliable and efficient residual-typed error estimator for the finite element approximation of a 2D cathodic protection problem governed by a steady-state diffusion equation with a nonlinear boundary condition. We propose a standard adaptive finite element method involving the Dörfler marking and a minimal refinement without the interior node property. Furthermore, we establish the contraction property of this adaptive algorithm in terms of the sum of the energy error and the scaled estimator. This essentially allows for a quasi-optimal convergence rate in terms of the number of elements over the underlying triangulation. Numerical experiments are provided to confirm this quasi-optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.