Abstract

In this paper, we derive quasi-norm a priori and a posteriori error estimates for the Crouzeix-Raviart type finite element approximation of the p-Laplacian. Sharper a priori upper error bounds are obtained. For instance, for sufficiently regular solutions we prove optimal a priori error bounds on the discretization error in an energy norm when $1 < p \leq 2$. We also show that the new a posteriori error estimates provide improved upper and lower bounds on the discretization error. For sufficiently regular solutions, the a posteriori error estimates are further shown to be equivalent on the discretization error in a quasi-norm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.