Abstract

In this paper, we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind. We show the optimal error estimates in the DG-norm (stronger than the H1 norm) and the L2 norm, respectively. Furthermore, some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error. These a posteriori analysis results can be applied to develop the adaptive DG methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.