Abstract

A quasi-non-linear fracture mechanics model based on beam on elastic foundation theory is applied for analysis of dowel joints with a single dowel loaded perpendicular to grain. The properties of the elastic foundation are chosen so that the perpendicular-to-grain tensile strength and fracture energy properties of the wood are correctly represented. It is shown that this particular choice of foundation stiffness makes a conventional maximum stress failure criterion lead to the same solution as the compliance method of fracture mechanics. Results of linear elastic fracture mechanics are obtained as a special case by assuming an infinitely large value of the foundation stiffness. Results of tests on so-called plate joints are compared with theoretical predictions, showing good agreement for variations in initial crack length as well as edge distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.