Abstract
A quasi-non-linear fracture mechanics model based on beam on elastic foundation theory is applied for analysis of the double cantilever beam (DCB) specimen for determination of fracture energy of wood. The properties of the elastic foundation are chosen so that the perpendicular-to-grain tensile strength and fracture energy properties of the wood are correctly represented. It is shown that this particular choice of foundation stiffness makes a conventional maximum stress failure criterion lead to the same solution as the fracture mechanics compliance method. Results of linear elastic fracture mechanics are obtained as a special case by assuming an infinitely large value of the perpendicular-to-grain tensile strength. The quasi-non-linear fracture mechanics model is compared with other models and with results of tests conducted to reveal the influence of the geometrical properties of the DCB specimen. In addition, the appropriateness of choice of the foundation stiffness is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.