Abstract

In this paper the vanishing Debye length limit (space charge neutral limit) of bipolar time-dependent drift-diffusion models for semiconductors with p-n junctions (i.e., with a fixed bipolar background charge) is studied in one space dimension. For general sign-changing doping profiles, the quasi-neutral limit (zero-Debye-length limit) is justified rigorously in the spatial mean square norm uniformly in time. One main ingredient of our analysis is the construction of a more accurate approximate solution, which takes into account the effects of initial and boundary layers, by using multiple scaling matched asymptotic analysis. Another key point of the proof is the establishment of the structural stability of this approximate solution by an elaborate energy method which yields the uniform estimates with respect to the scaled Debye length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.