Abstract
We propose first a generalization of the Density Functional Theory leading to single-particle equations of motion with a quasilocal mean-field operator containing a position-dependent effective mass and a spin-orbit potential. Ground-state properties of doubly magic nuclei are obtained within this framework using the Gogny D1S force and compared with the exact Hartree-Fock values. Next, extend the Density Functional Theory to include pairing correlations without formal violation of the particle-number condition. This theory, which is nonlocal, is simplified by a suitable quasilocal reduction. Some calculations to show the ability of this theory are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.