Abstract
In this paper we give necessary and sufficient conditions for the existence of solutions to quasilinear equations of Lane–Emden type with measure data on a Carnot group G of arbitrary step. The quasilinear part involves operators of the p-Laplacian type ∆G, p , 1 < p < ∞. These results are based on new a priori estimates of solutions in terms of nonlinear potentials of Th. Wolff’s type. As a consequence, we characterize completely removable singularities, and prove a Liouville type theorem for supersolutions of quasilinear equations with source terms which has been known only for equations involving the sub-Laplacian (p = 2) on the Heisenberg group.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have