Abstract
We show that the fundamental groups of any two closed irreducible non-geometric graph-manifolds are quasi-isometric. This answers a question of Kapovich and Leeb. We also classify the quasi-isometry types of fundamental groups of graph-manifolds with boundary in terms of certain finite two-colored graphs. A corollary is the quasi-isometry classification of Artin groups whose presentation graphs are trees. In particular any two right-angled Artin groups whose presentation graphs are trees of diameter at least 3 are quasi-isometric, answering a question of Bestvina; further, this quasi-isometry class does not include any other right-angled Artin groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.