Abstract

We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid for measure equivalence in the strongest possible sense, for two reasons. First, a right-angled Artin group G is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when G is nonabelian, the automorphism group of the universal cover of the Salvetti complex of G always contains infinitely generated (non-uniform) lattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call