Abstract

We show that if A is a closed subset of the Heisenberg group whose vertical projections are nowhere dense, then the complement of A is quasiconvex. In particular, closed sets which are null sets for the cc-Hausdorff 3-measure have quasiconvex complements. Conversely, we exhibit a compact totally disconnected set of Hausdorff dimension three whose complement is not quasiconvex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.