Abstract

This paper proposes a design method for cross-spring pivots with quasi-constant rotational stiffness in the field of unbalanced moment measurement. To achieve high precision measurement of unbalance moment, the relationship between instrument sensitivity and the rotational stiffness of the cross-spring pivot is revealed. In order to eliminate the impacts of payload changes on instrument sensitivity, the relationship between geometric parameters and the rotational stiffness of the pivot is studied. Further, cross-spring pivots with quasi-constant rotational stiffness are designed as the rotation unit of a static balancing instrument, while the center shift of pivot takes the minimum value. Certain amount of unbalance moments is measured by the instrument. Experimental studies of the instrument show that the maximum measurement errors of unbalance moments 0.162gmm, 0.319gmm and 1.300gmm are 0.068gmm, 0.086gmm and 0.053gmm, respectively, when the payload ranges from 0g to 7000g. The instrument can achieve a relatively high precision measurement and the instrument sensitivity is almost not affected by the changes of payloads. The effectiveness of the method and the stiffness property of the pivot are verified by the experiments. So this kind of pivot has good prospects in unbalance moment measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call