Abstract

We analyze steady-state and transient electron transport in the group III-nitride materials at high and ultra-high electric fields for different electron concentration regimes. At high electron concentrations where the electron distribution function assumes a shifted Maxwellian, we investigate different time-dependent transient transport regimes through the phase-plane anyalysis. Unexpected electron heating pattern is observed during the velocity overshoot process with a moderate electron temperature near the peak velocity followed by rapid increase in the deceleration period. For short nitride diodes, space-charge limited transport is considered by taking into account the self-consistent field. In this case, the overshoot is weaker and the electron heating in the region of the peak velocity is greater than that found for time-dependent problem. The transient processes are extended to sufficiently larger distances as well. When the electron concentration is small, we propose a model which accounts the main features of injected electrons in a short device with high fields. The electron velocity distribution over the device is found as a function of the field. It is demonstrated that in high fields the electrons are characterized by the extreme distribution function with the population inversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.