Abstract
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h(-2) after initial stabilization of the cultures in chemostat at D = 0.2-0.3 h(-1). It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used-at an acceleration rate 0.003 h(-2) the quasi steady state growth was observed until mu (crit) = 0.59 h(-1), which is also the mu (max) value for the culture. Lower values of mu (crit) were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h(-1) was immediately disrupted after initiating acceleration at the highest acceleration rate studied-0.06 h(-2). Observation was made that differences [Delta(mu - D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h(-2) (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate-it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S (0) = 5 g L(-1) glucose instead of S (0) = 10 g L(-1). It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility-Delta(mu - D) was less than 5%, standard deviations of biomass yields per ATP produced (Y (ATP)), and biomass yields per glucose consumed (Y (XS)) were less than 15%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have