Abstract

We study the one-dimensional asymmetric simple exclusion process on the lattice $\{1, \dots,N\}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the time scale $N^{1+a}$ the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the "Liggett boundaries" that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy--entropy flux pairs and a coupling argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.