Abstract

This article presents an extensive experimental and numerical investigation of aluminium sandwich plates subjected to quasi-static loading and low-velocity impact. The objective of this research is to understand and, ultimately, predict the initiation and progression of damage in an aluminium sandwich plate subjected to low-velocity impact. The static indentation and impact problems were analysed using the commercial finite-element software, ABAQUS. Quasi-static indentation tests and low-velocity drop weight tests were conducted to characterize the failure and to determine the extent of damage observed in aluminium sandwich plates. Comparison of the numerical load history, specimen damage area, and residual indentation with experimental results demonstrated the ability of the modelling methodology to capture the impact characteristics. Experimental results also indicated that the damage mode experienced on the impacted facesheet may be correlated to the energy absorbed by the plate during the impact event and the static failure energy. A numerical parametric study was conducted to determine the effect of various geometric parameters, such as foil thickness and cell size, on the damage resistance of the core and impacted facesheet. Findings showed that the energy absorbed during impact is independent of the core density. However, denser cores exhibited greater peak loads but experienced smaller damage profiles in the core and impacted facesheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.