Abstract
This paper deals with tiling of the plane by quasi regular polygons and their duals. The problem is motivated from the fact that the graphene, infinite number of carbon molecules forming a honeycomb lattice, may have states with two bond lengths and equal bond angles or one bond length and different bond angles. We prove that the Euclidean plane can be tiled with two tiles consisting of quasi regular hexagons with two different lengths (isogonal hexagons) and regular hexagons. The dual lattice is constructed with the isotoxal hexagons (equal edges but two different interior angles) and regular hexagons. We also give similar tilings of the plane with the quasi regular polygons along with the regular polygons possessing the Coxeter symmetries Dn, n=2,3,4,5. The group elements as well as the vertices of the polygons are represented by the complex numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.