Abstract
Multilevel converters have gained significant popularity in medium-voltage and high-power applications due to their numerous advantages over traditional two-level converters. These advantages include reduced harmonic distortion, improved efficiency, and lower stress on power semiconductors. Selective harmonic elimination (SHE) is a modulation method that can be employed with multilevel converters to achieve high-quality output voltage waveforms. In this work, an extension of Broyden’s method, known as the Quasi-Modified Newton Method, is implemented for selective harmonic elimination and accurate calculation of switching angles for a wide range of modulation indices. The proposed method is applied to cascaded H bridge inverters operating at levels 5, 7, and 9. The method offers simplicity, reduced computational burden, and faster convergence, making it easily implementable, reducing total harmonic distortion (THD), and reducing RMSE and MAD errors. The paper includes simulation and experimental results that validate the accuracy and effectiveness of the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.