Abstract

We study estimation of large Dynamic Factor models implemented through the Expectation Maximization (EM) algorithm, jointly with the Kalman smoother. We prove that as both n and T diverge to infinity: (i) the estimated loadings are \sqrt{T}-consistent and asymptotically normal and equivalent to their Quasi Maximum Likelihood estimates; (ii) the estimated factors are \sqrt{n}-consistent and asymptotically normal and equivalent to their Weighted Least Squares estimates. Moreover, the estimated loadings are asymptotically as efficient as those obtained by Principal Components analysis, while the estimated factors are more efficient if the idiosyncratic covariance is sparse enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.