Abstract
The authors propose a novel signal design for generating wideband quasi-Frequency Modulated (FM) waveforms using chaotic systems. The receiver is based on a self synchronizing chaotic system, making for fast synchronization that is robust to timing errors or Doppler shifts. The chaotic oscillator has fast and slow time scales, and the slow oscillating part of the chaotic system is used to sweep the fast oscillating part thereby generating a modulated waveform that changes its frequency as a function of time. The potentials of these waveforms are demonstrated for joint radar-communication (RadComm) systems. Using the same nonlinear system a chaos frequency shift keying (CFSK) approach is utilized to encode the digital information. To decode the information, a drive-response synchronization scheme is utilized. Results indicate that our proposed signal design closely matches the bit-error rate (BER) of theoretical noncoherent frequency shift keying (FSK) while having good radar imaging capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.